Raw Data

Masked Language Models and BERT

Cornell CS 5740: Natural Language Processing Yoav Artzi, Spring 2023

- LMs so far: predict the next token given the previous tokens
- This enables a self-supervised task
- That we can train on a lot of data
- And get really interesting and useful representations

- LMs so far: predict the next token given the previous tokens
- What if we have a complete sentence?
 - Can do the same

- LMs so far: predict the next token given the previous tokens
- What if we have a complete sentence?
 - Can do the same
 - Decode through an LM to compute representations
 - But: representations conditioned on past context only
 - So: missing an opportunity here to incorporate future context
- How can we formulate a self-supervised prediction task?

- We have many sequence of tokens $\bar{x} = \langle x_1, ..., x_n \rangle$
 - Just raw data, like with regular LMs
- Let's create a prediction task by hiding part of the sequence, and then trying to predict them
 - Input: the sequence \bar{x}^M where some tokens are replaced with the token [MASK], for example: $\bar{x}^M = \langle x_1, ..., x_4, [MASK], x_6, ..., x_n \rangle$
 - Output: a probability distribution over tokens for each masked position such that the correct token gets the highest probability, for example $\arg \max_{\mathcal{V}} p(x_7^M | \bar{x}^M) = x_7$
 - Training objective: negative log-likelihood for masked tokens

Encoder Transformer

- So far: Transformers self-attend to past tokens to predict the next token
- This is called a Decoder Transformer
- Encoders assume we have the complete sequence
- There is no generation problem, we just want representations
 - We will learn how to use them later on
- The big difference: self-attention is not masked, so computes weighted sum over entire context (i.e., entire sequence)

The Transformer Decoder-only Variant (revisit)

 $\begin{aligned} & \mathbf{TransformerBlock}^{k}(\mathbf{u}_{1}, \dots, \mathbf{u}_{i}) \\ & \mathbf{q}^{(l)} = \mathbf{W}_{q}^{(l)} \mathbf{u}_{i} \\ & \mathbf{K}^{(l)} = \mathbf{W}_{k}^{(l)} [\mathbf{u}_{1} \cdots \mathbf{u}_{i}] \\ & \mathbf{V}^{(l)} = \mathbf{W}_{\nu}^{(l)} [\mathbf{u}_{1} \cdots \mathbf{u}_{i}] \\ & \mathbf{z} = \mathrm{LN}([\mathrm{SelfAttn}(\mathbf{q}^{(1)}, \mathbf{K}^{(1)}, \mathbf{V}^{(1)}); \cdots; \\ & \mathrm{SelfAttn}(\mathbf{q}^{(L)}, \mathbf{K}^{(L)}, \mathbf{V}^{(L)})] + \mathbf{u}_{i}) \\ & \mathbf{h}_{i}^{k} = \mathrm{LN}(\mathbf{W}'' \mathrm{GELU}(\mathbf{W}'\mathbf{z} + \mathbf{b}') + \mathbf{b}'' + \mathbf{z}) \end{aligned}$

Self-attention reminder

SelfAttn($\mathbf{Q}, \mathbf{K}, \mathbf{V}$) = softmax($\mathbf{Q}\mathbf{K}/\sqrt{d_k}$)V

 $\mathbf{x}_i = \phi(x_i) + \phi_p(i)$

$$\mathbf{h}_i^1 = \text{TransformerBlock}^1(\mathbf{x}_1, \dots, \mathbf{x}_i)$$

$$\mathbf{h}_i^2 = \text{TransformerBlock}^2(\mathbf{h}_1^1, \dots, \mathbf{h}_i^1)$$

$$\mathbf{h}_{i}^{k} = \text{TransformerBlock}^{k}(\mathbf{h}_{1}^{k-1}, \dots, \mathbf{h}_{i}^{k-1})$$

 $\mathbf{h}_{i}^{K} = \text{TransformerBlock}^{K}(\mathbf{h}_{1}^{K-1}, ..., \mathbf{h}_{i}^{K-1})$

 $p(x_{i+1}|x_1,...,x_i) = \operatorname{softmax}(\mathbf{W}^{\mathcal{V}}\mathbf{h}_i^K)$

During learning, compute the whole sequence at ones by **masking** items you shouldn't attend to in softmax – easy by setting softmax to $-\infty$

Encoder Transformer*

TransformerBlock ^k ($\mathbf{u}_1,, \mathbf{u}_n$)
$\mathbf{Q}^{(l)} = \mathbf{W}_q^{(l)}[\mathbf{u}_1 \cdots \mathbf{u}_n]$
$\mathbf{K}^{(l)} = \mathbf{W}_k^{(l)}[\mathbf{u}_1 \cdots \mathbf{u}_n]$
$\mathbf{V}^{(l)} = \mathbf{W}_{v}^{(l)}[\mathbf{u}_{1}\cdots\mathbf{u}_{n}]$
$\mathbf{Z} = \mathrm{LN}([\mathrm{SelfAttn}(\mathbf{Q}^{(1)}, \mathbf{K}^{(1)}, \mathbf{V}^{(1)}); \cdots;$
$\frac{\text{SelfAttn}(\mathbf{Q}^{(L)}, \mathbf{K}^{(L)}, \mathbf{V}^{(L)})]}{\text{H}[\mathbf{u}_1 \cdots \mathbf{u}_n]} + [\mathbf{u}_1 \cdots \mathbf{u}_n]$
$[\mathbf{h}_1^k \cdots \mathbf{h}_n^k] = \mathrm{LN}(\mathbf{W}'' \mathrm{GELU}(\mathbf{W}'\mathbf{Z} + \mathbf{b}') + \mathbf{b}'' + \mathbf{Z})$

Self-attention reminder

SelfAttn($\mathbf{Q}, \mathbf{K}, \mathbf{V}$) = softmax($\mathbf{Q}\mathbf{K}/\sqrt{d_k}$) \mathbf{V}

 $\mathbf{x}_{i} = \phi(x_{i}^{M}) + \phi_{p}(i), i = 1, ..., n$ $[\mathbf{h}_{1}^{1}\cdots\mathbf{h}_{n}^{1}] = \text{TransformerBlock}^{1}(\mathbf{x}_{1}, ..., \mathbf{x}_{n})$ $[\mathbf{h}_{1}^{2}\cdots\mathbf{h}_{n}^{2}] = \text{TransformerBlock}^{2}(\mathbf{h}_{1}^{1}, ..., \mathbf{h}_{n}^{1})$... $[\mathbf{h}_{1}^{K}\cdots\mathbf{h}_{n}^{K}] = \text{TransformerBlock}^{K}(\mathbf{h}_{1}^{K-1}, ..., \mathbf{h}_{n}^{K-1})$... $[\mathbf{h}_{1}^{K}\cdots\mathbf{h}_{n}^{K}] = \text{TransformerBlock}^{K}(\mathbf{h}_{1}^{K-1}, ..., \mathbf{h}_{n}^{K-1})$ $p(x_{i} | x_{1}^{M}, ..., x_{n}^{M}) = \text{softmax}(\mathbf{W}^{\mathcal{V}}\mathbf{h}_{i}^{K})$

Outputs (shifted right)

Output Probabilities

Softmax

Linear

 $\times K$

Positional

Encoding

* for Masked LM

[Vaswani et al. 2017]

BERT

Bidirectional Encoder Representations from Transformers

- Encoder transformer
- BERT Base: 12 transformer blocks, 768-dim word-piece tokens, 12 self-attention heads → 110M parameters
- BERT Large: 24 transformer blocks, 1024-dim word-piece tokens, 16 self-attention heads → 340M parameters
- RoBERTa: same model, much more data (160GB of data instead of 16GB)

BERT Inputs

- One or two sentences
 - Word-piece token embeddings
 - Position and segment embeddings

BERT

Word-piece Tokenization (in a nutshell)

- 1. Initialize with tokens for all characters
- 2. While vocabulary size is below the target size:
 - 1. Build a language model over the corpus (e.g., unigram language model)
 - 2. Merge pieces that lead to highest improvement in language model perplexity
- Need to choose a language model that will make the process tractable
- Often a unigram language model (e.g., SentencePiece library)
- Particularly suitable for machine translation

BERT Training

- Data: raw text
- Two objectives:
 - Masked LM
 - Next-sentence prediction
- Later development in RoBERTa:
 - More data, no next-sentence prediction, dynamic masking

BERT Masking Recipe for Training

- Mask and predict 15% of the tokens
 - For 80% (of 15%) replace with the input token with [MASK]
 - For 10%, replace with a random token
 - For 10%, keep the same

BERT Next-sentence Prediction

- Input: [CLS] Text chunk 1 [SEP] Text chunk 2
- Training data: 50% of the time, take the true next chunk of text, 50% of the time take a random other chunk
- Predict whether the next chunk is the true next chunk
- Prediction is done on the [CLS] output representation

BERT Related Techniques

- Central Word Prediction Objective (context2vec) [Melamud et al. 2016]
- Machine Translation Objective (CoVe) [McMann et al. 2017]
- Bi-directional Language Modeling Objective (ELMo) [Peters et al. 2018]
- Then BERT came ...
- ... and many more followed

BERT What Do We Get?

- We can feed complete sentences to BERT
- For each token, we get a contextualized representation
 - Meaning: computed taking the other tokens in the sentence into acocunt
- In contrast to word2vec representations that fixed and do not depend on context
- While word2vec vectors are forced to mix multiple senses, BERT can provide more instance-specific vectors

BERT How Do We Use It?

- Widely supported by existing frameworks
 - E.g., Transformers library by Hugging Face
- We will soon see how to use it when working with annotated data
- Large BERT models quickly outperformed human performance on several NLP tasks
 - But what it meant beyond benchmarking was less clear
- Started an arms race towards bigger and bigger models, which quickly led to the LLMs of today

BERT What It Is Not Great For?

- BERT cannot generate text (at least not in an obvious way)
 - Not an autoregressive model, can do weird things like stick a [MASK]at the end of a string, fill in the mask, and repeat
- Masked language models are intended to be used primarily for "analysis" tasks

BERT What does BERT Learn?

- There is a lot of work trying to decipher what BERT learns in its representations
 - Much harder with recent LLMs because they are not as open
- Some very interesting results, but not completely clear how to interpret them

What Does BERT Learn?

- Try to solve different linguistic tasks given each block level, without fine-tuning
 - Specifically: solve tasks using mixing weights on levels
- Goal: see what information each new level adds
- Each task classifier takes a single mixed hidden representation $\mathbf{h}_{i,\tau}$ or a pair of representations for two tokens

- *i* : token index
- *K* : number of block levels
- τ : task
- γ_{τ} : task parameter
- \mathbf{a}_{τ} : mixing parameters

$$\mathbf{s}_{\tau} = \operatorname{softmax}(\mathbf{a}_{\tau})$$

$$\mathbf{h}_{i,\tau} = \gamma_{\tau} \sum_{k=0}^{K} s_{\tau}^{k} \mathbf{h}_{i}^{k}$$

What Does BERT Learn?

- Each plot shows a task
- Plots show \mathbf{s}_{τ}^{k} weights magnitude in blue, and the number of self-attention levels
- The performance delta when adding this layer is in purple
- Largely: higher level semantic tasks happen in later levels

Acknowledgements

• Some slides in this deck were adapted from Greg Durrett