
Cornell CS 5740: Natural Language Processing
Yoav Artzi, Spring 2023

Raw Data
Masked Language
Models and BERT

1

• LMs so far: predict the next token given the previous tokens

• This enables a self-supervised task

• That we can train on a lot of data

• And get really interesting and useful representations

Masked LMs

2

• LMs so far: predict the next token given the previous tokens

• What if we have a complete sentence?

- Can do the same

Masked LMs

3

• LMs so far: predict the next token given the previous tokens

• What if we have a complete sentence?

- Can do the same

- Decode through an LM to compute representations

- But: representations conditioned on past context only

- So: missing an opportunity here to incorporate future context

• How can we formulate a self-supervised prediction task?

Masked LMs

4

• We have many sequence of tokens

- Just raw data, like with regular LMs

• Let’s create a prediction task by hiding part of the sequence, and then
trying to predict them

- Input: the sequence where some tokens are replaced with the token
, for example:

- Output: a probability distribution over tokens for each masked position
such that the correct token gets the highest probability, for example

- Training objective: negative log-likelihood for masked tokens

x̄ = ⟨x1, …, xn⟩

x̄M

[MASK] x̄M = ⟨x1, …, x4, [MASK], x6, …, xn⟩

arg max
𝒱

p(xM
7 | x̄M) = x7

Masked LMs

5

Masked LMs

6
Image from https://www.holisticai.com/blog/from-transformer-architecture-to-prompt-engineering

• So far: Transformers self-attend to past tokens to predict the
next token

• This is called a Decoder Transformer

• Encoders assume we have the complete sequence

• There is no generation problem, we just want representations

- We will learn how to use them later on

• The big difference: self-attention is not masked, so computes
weighted sum over entire context (i.e., entire sequence)

Encoder Transformer

7

Decoder-only Variant (revisit)
The Transformer

8

Figure 1: The Transformer - model architecture.

around each of the sub-layers, followed by layer normalization. We also modify the self-attention
sub-layer in the decoder stack to prevent positions from attending to subsequent positions. This
masking, combined with fact that the output embeddings are offset by one position, ensures that the
predictions for position i can depend only on the known outputs at positions less than i.

3.2 Attention

An attention function can be described as mapping a query and a set of key-value pairs to an output,
where the query, keys, values, and output are all vectors. The output is computed as a weighted sum
of the values, where the weight assigned to each value is computed by a compatibility function of the
query with the corresponding key.

3.2.1 Scaled Dot-Product Attention

We call our particular attention "Scaled Dot-Product Attention" (Figure 2). The input consists of
queries and keys of dimension dk, and values of dimension dv . We compute the dot products of the
query with all keys, divide each by

p
dk, and apply a softmax function to obtain the weights on the

values.

In practice, we compute the attention function on a set of queries simultaneously, packed together
into a matrix Q. The keys and values are also packed together into matrices K and V . We compute
the matrix of outputs as:

Attention(Q,K, V) = softmax(
QK

T

p
dk

)V (1)

3

Figure 1: The Transformer - model architecture.

around each of the sub-layers, followed by layer normalization. We also modify the self-attention
sub-layer in the decoder stack to prevent positions from attending to subsequent positions. This
masking, combined with fact that the output embeddings are offset by one position, ensures that the
predictions for position i can depend only on the known outputs at positions less than i.

3.2 Attention

An attention function can be described as mapping a query and a set of key-value pairs to an output,
where the query, keys, values, and output are all vectors. The output is computed as a weighted sum
of the values, where the weight assigned to each value is computed by a compatibility function of the
query with the corresponding key.

3.2.1 Scaled Dot-Product Attention

We call our particular attention "Scaled Dot-Product Attention" (Figure 2). The input consists of
queries and keys of dimension dk, and values of dimension dv . We compute the dot products of the
query with all keys, divide each by

p
dk, and apply a softmax function to obtain the weights on the

values.

In practice, we compute the attention function on a set of queries simultaneously, packed together
into a matrix Q. The keys and values are also packed together into matrices K and V . We compute
the matrix of outputs as:

Attention(Q,K, V) = softmax(
QK

T

p
dk

)V (1)

3

× K

[Vaswani et al. 2017]

SelfAttn(Q, K, V) = softmax(QK / dk)V

Self-attention reminder During learning, compute the whole
sequence at ones by masking items
you shouldn’t attend to in —
easy by setting to

softmax
softmax −∞

TransformerBlockk(u1, …, ui) xi = ϕ(xi) + ϕp(i)

q(l) = W(l)
q ui h1

i = TransformerBlock1(x1, …, xi)

K(l) = W(l)
k [u1⋯ui] h2

i = TransformerBlock2(h1
1, …, h1

i)

V(l) = W(l)
v [u1⋯ui] …

z = LN([SelfAttn(q(1), K(1), V(1)); ⋯; hk
i = TransformerBlockk(hk−1

1 , …, hk−1
i)

SelfAttn(q(L), K(L), V(L))] + ui) …
hk

i = LN(W′ ′ GELU(W′ z + b′) + b′ ′ + z) hK
i = TransformerBlockK(hK−1

1 , …, hK−1
i)

p(xi+1 |x1, …, xi) = softmax(W𝒱hK
i)

Encoder Transformer*

9 [Vaswani et al. 2017]

SelfAttn(Q, K, V) = softmax(QK / dk)V

Self-attention reminder

TransformerBlockk(u1, …, un) xi = ϕ(xM
i) + ϕp(i), i = 1,…, n

Q(l) = W(l)
q [u1⋯un] [h1

1⋯h1
n] = TransformerBlock1(x1, …, xn)

K(l) = W(l)
k [u1⋯un] [h2

1⋯h2
n] = TransformerBlock2(h1

1, …, h1
n)

V(l) = W(l)
v [u1⋯un] …

Z = LN([SelfAttn(Q(1), K(1), V(1)); ⋯; [hk
1⋯hk

n] = TransformerBlockk(hk−1
1 , …, hk−1

n)

SelfAttn(Q(L), K(L), V(L))] + [u1⋯un]) …
[hk

1⋯hk
n] = LN(W′ ′ GELU(W′ Z + b′) + b′ ′ + Z) [hK

1 ⋯hK
n] = TransformerBlockK(hK−1

1 , …, hK−1
n)

p(xi |xM
1 , …, xM

n) = softmax(W𝒱hK
i)

Figure 1: The Transformer - model architecture.

around each of the sub-layers, followed by layer normalization. We also modify the self-attention
sub-layer in the decoder stack to prevent positions from attending to subsequent positions. This
masking, combined with fact that the output embeddings are offset by one position, ensures that the
predictions for position i can depend only on the known outputs at positions less than i.

3.2 Attention

An attention function can be described as mapping a query and a set of key-value pairs to an output,
where the query, keys, values, and output are all vectors. The output is computed as a weighted sum
of the values, where the weight assigned to each value is computed by a compatibility function of the
query with the corresponding key.

3.2.1 Scaled Dot-Product Attention

We call our particular attention "Scaled Dot-Product Attention" (Figure 2). The input consists of
queries and keys of dimension dk, and values of dimension dv . We compute the dot products of the
query with all keys, divide each by

p
dk, and apply a softmax function to obtain the weights on the

values.

In practice, we compute the attention function on a set of queries simultaneously, packed together
into a matrix Q. The keys and values are also packed together into matrices K and V . We compute
the matrix of outputs as:

Attention(Q,K, V) = softmax(
QK

T

p
dk

)V (1)

3

Figure 1: The Transformer - model architecture.

around each of the sub-layers, followed by layer normalization. We also modify the self-attention
sub-layer in the decoder stack to prevent positions from attending to subsequent positions. This
masking, combined with fact that the output embeddings are offset by one position, ensures that the
predictions for position i can depend only on the known outputs at positions less than i.

3.2 Attention

An attention function can be described as mapping a query and a set of key-value pairs to an output,
where the query, keys, values, and output are all vectors. The output is computed as a weighted sum
of the values, where the weight assigned to each value is computed by a compatibility function of the
query with the corresponding key.

3.2.1 Scaled Dot-Product Attention

We call our particular attention "Scaled Dot-Product Attention" (Figure 2). The input consists of
queries and keys of dimension dk, and values of dimension dv . We compute the dot products of the
query with all keys, divide each by

p
dk, and apply a softmax function to obtain the weights on the

values.

In practice, we compute the attention function on a set of queries simultaneously, packed together
into a matrix Q. The keys and values are also packed together into matrices K and V . We compute
the matrix of outputs as:

Attention(Q,K, V) = softmax(
QK

T

p
dk

)V (1)

3

Figure 1: The Transformer - model architecture.

around each of the sub-layers, followed by layer normalization. We also modify the self-attention
sub-layer in the decoder stack to prevent positions from attending to subsequent positions. This
masking, combined with fact that the output embeddings are offset by one position, ensures that the
predictions for position i can depend only on the known outputs at positions less than i.

3.2 Attention

An attention function can be described as mapping a query and a set of key-value pairs to an output,
where the query, keys, values, and output are all vectors. The output is computed as a weighted sum
of the values, where the weight assigned to each value is computed by a compatibility function of the
query with the corresponding key.

3.2.1 Scaled Dot-Product Attention

We call our particular attention "Scaled Dot-Product Attention" (Figure 2). The input consists of
queries and keys of dimension dk, and values of dimension dv . We compute the dot products of the
query with all keys, divide each by

p
dk, and apply a softmax function to obtain the weights on the

values.

In practice, we compute the attention function on a set of queries simultaneously, packed together
into a matrix Q. The keys and values are also packed together into matrices K and V . We compute
the matrix of outputs as:

Attention(Q,K, V) = softmax(
QK

T

p
dk

)V (1)

3

× K

* for Masked LM

• Encoder transformer

• BERT Base: 12 transformer blocks, 768-dim word-piece tokens,
12 self-attention heads → 110M parameters

• BERT Large: 24 transformer blocks, 1024-dim word-piece
tokens, 16 self-attention heads → 340M parameters

• RoBERTa: same model, much more data (160GB of data instead
of 16GB)

Bidirectional Encoder Representations from Transformers
BERT

10
[Devlin et al. 2018]

• One or two sentences

- Word-piece token embeddings

- Position and segment embeddings

Inputs
BERT

11

[CLS] he likes play ##ing [SEP]my dog is cute [SEP]Input

E[CLS] Ehe Elikes Eplay E##ing E[SEP]Emy Edog Eis Ecute E[SEP]
Token
Embeddings

EA EB EB EB EB EBEA EA EA EA EA
Segment
Embeddings

E0 E6 E7 E8 E9 E10E1 E2 E3 E4 E5
Position
Embeddings

Figure 2: BERT input representation. The input embeddings are the sum of the token embeddings, the segmenta-
tion embeddings and the position embeddings.

The NSP task is closely related to representation-
learning objectives used in Jernite et al. (2017) and
Logeswaran and Lee (2018). However, in prior
work, only sentence embeddings are transferred to
down-stream tasks, where BERT transfers all pa-
rameters to initialize end-task model parameters.

Pre-training data The pre-training procedure
largely follows the existing literature on language
model pre-training. For the pre-training corpus we
use the BooksCorpus (800M words) (Zhu et al.,
2015) and English Wikipedia (2,500M words).
For Wikipedia we extract only the text passages
and ignore lists, tables, and headers. It is criti-
cal to use a document-level corpus rather than a
shuffled sentence-level corpus such as the Billion
Word Benchmark (Chelba et al., 2013) in order to
extract long contiguous sequences.

3.2 Fine-tuning BERT

Fine-tuning is straightforward since the self-
attention mechanism in the Transformer al-
lows BERT to model many downstream tasks—
whether they involve single text or text pairs—by
swapping out the appropriate inputs and outputs.
For applications involving text pairs, a common
pattern is to independently encode text pairs be-
fore applying bidirectional cross attention, such
as Parikh et al. (2016); Seo et al. (2017). BERT
instead uses the self-attention mechanism to unify
these two stages, as encoding a concatenated text
pair with self-attention effectively includes bidi-

rectional cross attention between two sentences.
For each task, we simply plug in the task-

specific inputs and outputs into BERT and fine-
tune all the parameters end-to-end. At the in-
put, sentence A and sentence B from pre-training
are analogous to (1) sentence pairs in paraphras-
ing, (2) hypothesis-premise pairs in entailment, (3)
question-passage pairs in question answering, and

(4) a degenerate text-? pair in text classification
or sequence tagging. At the output, the token rep-
resentations are fed into an output layer for token-
level tasks, such as sequence tagging or question
answering, and the [CLS] representation is fed
into an output layer for classification, such as en-
tailment or sentiment analysis.

Compared to pre-training, fine-tuning is rela-
tively inexpensive. All of the results in the pa-
per can be replicated in at most 1 hour on a sin-
gle Cloud TPU, or a few hours on a GPU, starting
from the exact same pre-trained model.7 We de-
scribe the task-specific details in the correspond-
ing subsections of Section 4. More details can be
found in Appendix A.5.

4 Experiments

In this section, we present BERT fine-tuning re-
sults on 11 NLP tasks.

4.1 GLUE

The General Language Understanding Evaluation
(GLUE) benchmark (Wang et al., 2018a) is a col-
lection of diverse natural language understanding
tasks. Detailed descriptions of GLUE datasets are
included in Appendix B.1.

To fine-tune on GLUE, we represent the input
sequence (for single sentence or sentence pairs)
as described in Section 3, and use the final hid-
den vector C 2 RH corresponding to the first
input token ([CLS]) as the aggregate representa-
tion. The only new parameters introduced during
fine-tuning are classification layer weights W 2
RK⇥H , where K is the number of labels. We com-
pute a standard classification loss with C and W ,
i.e., log(softmax(CW

T)).
7For example, the BERT SQuAD model can be trained in

around 30 minutes on a single Cloud TPU to achieve a Dev
F1 score of 91.0%.

8See (10) in https://gluebenchmark.com/faq.

[figure from Devlin et al. 2018]

1. Initialize with tokens for all characters

2. While vocabulary size is below the target size:

1. Build a language model over the corpus (e.g., unigram language
model)

2. Merge pieces that lead to highest improvement in language model
perplexity

• Need to choose a language model that will make the process tractable

• Often a unigram language model (e.g., SentencePiece library)

• Particularly suitable for machine translation

Word-piece Tokenization (in a nutshell)
BERT

12
[Schuster and Nakajima (2012), Wu et al. (2016), Kudo and Richardson (2018)]

• Data: raw text

• Two objectives:

- Masked LM

- Next-sentence prediction

• Later development in RoBERTa:

- More data, no next-sentence prediction, dynamic masking

Training
BERT

13

• Mask and predict 15% of the tokens

- For 80% (of 15%) replace with the input token with

- For 10%, replace with a random token

- For 10%, keep the same

[MASK]

Masking Recipe for Training
BERT

14

• Input: [CLS] Text chunk 1 [SEP] Text chunk 2

• Training data: 50% of the time, take the true next chunk of text,
50% of the time take a random other chunk

• Predict whether the next chunk is the true next chunk

• Prediction is done on the [CLS] output representation

Next-sentence Prediction
BERT

15

• Central Word Prediction Objective (context2vec) [Melamud et al.
2016]

• Machine Translation Objective (CoVe) [McMann et al. 2017]

• Bi-directional Language Modeling Objective (ELMo) [Peters et al.
2018]

• Then BERT came …

• … and many more followed

Related Techniques
BERT

16

https://www.aclweb.org/anthology/K16-1006
https://www.aclweb.org/anthology/K16-1006
https://www.aclweb.org/anthology/K16-1006
https://www.aclweb.org/anthology/K16-1006
https://arxiv.org/abs/1708.00107
https://arxiv.org/abs/1802.05365
https://arxiv.org/abs/1802.05365
https://arxiv.org/abs/1802.05365
https://arxiv.org/abs/1802.05365

• We can feed complete sentences to BERT

• For each token, we get a contextualized representation

- Meaning: computed taking the other tokens in the sentence
into acocunt

• In contrast to word2vec representations that fixed and do not
depend on context

• While word2vec vectors are forced to mix multiple senses, BERT
can provide more instance-specific vectors

What Do We Get?
BERT

17

• Widely supported by existing frameworks

- E.g., Transformers library by Hugging Face

• We will soon see how to use it when working with annotated data

• Large BERT models quickly outperformed human performance
on several NLP tasks

- But what it meant beyond benchmarking was less clear

• Started an arms race towards bigger and bigger models, which
quickly led to the LLMs of today

How Do We Use It?
BERT

18

• BERT cannot generate text (at least not in an obvious way)

- Not an autoregressive model, can do weird things like stick a
at the end of a string, fill in the mask, and repeat

• Masked language models are intended to be used primarily for
“analysis” tasks

[MASK]

What It Is Not Great For?
BERT

19

• There is a lot of work trying to decipher what BERT learns in its
representations

- Much harder with recent LLMs because they are not as open

• Some very interesting results, but not completely clear how to
interpret them

What does BERT Learn?
BERT

20

• Try to solve different linguistic
tasks given each block level,
without fine-tuning

- Specifically: solve tasks using
mixing weights on levels

• Goal: see what information each
new level adds

• Each task classifier takes a
single mixed hidden
representation or a pair of
representations for two tokens

hi,τ

What Does BERT Learn?

21
[Tenney et al. 2019]

i : token index
K : number of block levels
τ : task

γτ : task parameter
aτ : mixing parameters

sτ = softmax(aτ)

hi,τ = γτ

K

∑
k=0

sk
τ hk

i

• Each plot shows a task

• Plots show weights
magnitude in blue, and the
number of self-attention levels

• The performance delta when
adding this layer is in purple

• Largely: higher level semantic
tasks happen in later levels

sk
τ

What Does BERT Learn?

22
[figure from Tenney et al. (2019)]

Figure 1: Summary statistics on BERT-large. Columns
on left show F1 dev-set scores for the baseline (P (0)

⌧)
and full-model (P (L)

⌧) probes. Dark (blue) are the mix-
ing weight center of gravity (Eq. 2); light (purple) are
the expected layer from the cumulative scores (Eq. 4).

idence that the corresponding layer contains more
information related to that particular task.

Center-of-Gravity. As a summary statistic, we
define the mixing weight center of gravity as:

Ēs[`] =
LX

`=0

` · s(`)⌧ (2)

This reflects the average layer attended to for each
task; intuitively, we can interpret a higher value to
mean that the information needed for that task is
captured by higher layers.

3.2 Cumulative Scoring
We would like to estimate at which layer in the
encoder a target (s1, s2, label) can be correctly
predicted. Mixing weights cannot tell us this di-
rectly, because they are learned as parameters and
do not correspond to a distribution over data. A
naive classifier at a single layer cannot either, be-
cause information about a particular span may be
spread out across several layers, and as observed
in Peters et al. (2018b) the encoder may choose to
discard information at higher layers.

To address this, we train a series of classifiers
{P (`)

⌧ }` which use scalar mixing (Eq. 1) to attend
to layer ` as well as all previous layers. P (0)

⌧ corre-
sponds to a non-contextual baseline that uses only
a bag of word(piece) embeddings, while P

(L)
⌧ =

P⌧ corresponds to probing all layers of the BERT
model.

These classifiers are cumulative, in the sense
that P (`+1)

⌧ has a similar number of parameters but
with access to strictly more information than P

(`)
⌧ ,

Figure 2: Layer-wise metrics on BERT-large. Solid
(blue) are mixing weights s(`)⌧ (§3.1); outlined (purple)
are differential scores �(`)

⌧ (§3.2), normalized for each
task. Horizontal axis is encoder layer.

and we see intuitively that performance (F1 score)
generally increases as more layers are added.3 We
can then compute a differential score �(`)

⌧ , which
measures how much better we do on the probing
task if we observe one additional encoder layer `:

�(`)
⌧ = Score(P (`)

⌧)� Score(P (`�1)
⌧) (3)

Expected Layer. Again, we compute a
(pseudo)4 expectation over the differential scores
as a summary statistic. To focus on the behavior
of the contextual encoder layers, we omit the con-
tribution of both the “trivial” examples resolved at
layer 0, as well as the remaining headroom from

3Note that if a new layer provides distracting features, the
probing model can overfit and performance can drop. We see
this in particular in the last 1-2 layers (Figure 2).

4This is not a true expectation because the F1 score is not
an expectation over examples.

• Some slides in this deck were adapted from Greg Durrett

Acknowledgements

23

